Buckling a Semiflexible Polymer Chain under Compression

نویسندگان

  • Ekaterina Pilyugina
  • Brad Krajina
  • Andrew J. Spakowitz
  • Jay D. Schieber
چکیده

Instability and structural transitions arise in many important problems involving dynamics at molecular length scales. Buckling of an elastic rod under a compressive load offers a useful general picture of such a transition. However, the existing theoretical description of buckling is applicable in the load response of macroscopic structures, only when fluctuations can be neglected, whereas membranes, polymer brushes, filaments, and macromolecular chains undergo considerable Brownian fluctuations. We analyze here the buckling of a fluctuating semiflexible polymer experiencing a compressive load. Previous works rely on approximations to the polymer statistics, resulting in a range of predictions for the buckling transition that disagree on whether fluctuations elevate or depress the critical buckling force. In contrast, our theory exploits exact results for the statistical behavior of the worm-like chain model yielding unambiguous predictions about the buckling conditions and nature of the buckling transition. We find that a fluctuating polymer under compressive load requires a larger force to buckle than an elastic rod in the absence of fluctuations. The nature of the buckling transition exhibits a marked change from being distinctly second order in the absence of fluctuations to being a more gradual, compliant transition in the presence of fluctuations. We analyze the thermodynamic contributions throughout the buckling transition to demonstrate that the chain entropy favors the extended state over the buckled state, providing a thermodynamic justification of the elevated buckling force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling of semiflexible filaments under compression

A model for filament buckling at finite temperatures is presented. Starting from the classical worm-like chain model under constant compression, we use a mean-field approach for filament inextensibility to find the complete partition function. We find that there is a simple interpolation formula that describes the free energy of chains or filaments as a function of end-to-end separation, which ...

متن کامل

Compression induced phase transition of nematic brush: A mean-field theory study.

Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropi...

متن کامل

Buckling, fluctuations, and collapse in semiflexible polyelectrolytes.

We present a systematic statistical mechanical analysis of the conformational properties of a stiff polyelectrolyte chain with intrachain attractions that are due to counterion correlations. We show that the mean-field solution corresponds to an Euler-like buckling instability. The effect of the conformational fluctuations on the buckling instability is investigated, first, qualitatively, withi...

متن کامل

Flow-induced helical coiling of semiflexible polymers in structured microchannels.

The conformations of semiflexible (bio)polymers are studied in flow-through geometrically structured microchannels. Using mesoscale hydrodynamics simulations, we show that the polymer undergoes a rod-to-helix transition as it moves from the narrow high-velocity region into the wide low-velocity region of the channel. The transient helix formation is the result of a nonequilibrium and nonstation...

متن کامل

Conformational Properties Of A Semiflexible Polymer Chain: Exact Results On A Hexagonal Lattice

We have investigated conformational properties of a linear semiflexible homopolymer chain in the bulk and adsorption desorption behaviour in the presence of an attractive impenetrable curved surface using lattice models. Since, it is understood that the essential physics associated with the conformational behavior of such polymer chains can be derived from a model of a self avoiding walk (SAW) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017